1. (1) (2)
2. 若a、b為正整數,則
3. 於上,且::,則坐標為。
4. 設。
5. 聯立方程式:
,()
(1)恰有一解。(兩直線交於一點)
(2)無解。(兩直線平行)
(3)無限組解。(兩直線重合)
,()
(1)恰有一解。(兩直線交於一點)
(2)無解。(兩直線平行)
(3)無限組解。(兩直線重合)
6. 實際值範圍:
測定值-最小測度單位 實際值 測定值+最小測度單位
測定值-最小測度單位 實際值 測定值+最小測度單位
7. (1)
(2)
(2)
8. (1)
(2)
(3)
(2)
(3)
9. (1)除法原理:
(2)餘式定理:以。
(3)因式定理:若
(2)餘式定理:以。
(3)因式定理:若
10. 一元二次方程式公式解:
若;且
若;且
則(1)D>0→二相異實解 (2)D=0→相等實解 (3)D<0→無實解
11. 根與係數:
(1)設。
(2)以
(1)設。
(2)以
12. (1)若一等差數列首項,公差,則
(2) 等差級數:
(2) 等差級數:
13. (1)等比數列首項為,公比為;則
(2) 等比級數※
(2) 等比級數※
14. (1)
(2)。
(3)
(2)。
(3)
15. (1)相對次數分配表、相對次數分配圖:
※相對次數
※相對次數
※相對累積次數
(2)算術平均數:
※未分組:總和總次數
※分組:中間值該組次數
(3)中位數:
※奇數項:中央項
※偶數項:中央二項之平均值
(4)眾數:次數出現次數最多者(可能多解)。
(2)算術平均數:
※未分組:總和總次數
※分組:中間值該組次數
(3)中位數:
※奇數項:中央項
※偶數項:中央二項之平均值
(4)眾數:次數出現次數最多者(可能多解)。
16. 一元一次不等式:
※
※
《乘除負數要變號;〝大號變小號、小號變大號〞》
17. 絕對值不等式:
若;則 (1)
(2)
(3)
若;則 (1)
(2)
(3)
18. 以上、下判別:(+ y )
19. 以左、右判別:( + x )
20. :
※
※
沒有留言:
張貼留言